La Real Academia Sueca de las Ciencias ha otorgado el Premio Nobel de Física 2020 al británico Roger Penrose, al alemán Reinhard Genzel y la estadounidense Andrea Ghez, cuarta mujer en obtener este galardón.

El investigador Roger Penrose de la Universidad de Oxford en Reino Unido ha ganado la mitad del Premio Nobel de Física de este año “por el descubrimiento de que la formación de un agujero negro es una predicción sólida de la teoría general de la relatividad”, según ha anunciado hoy en Estocolmo la Real Academia Sueca de las Ciencias.

Los tres ganadores del Premio Nobel de Física 2020: Roger Penrose, Reinhard Genzel y Andrea Ghez.
Crédito: Biswarup Ganguly/MPE/Elena Zhukova-UCLA

La otra mitad se la reparten Reinhard Genzel, científico del Instituto Max Planck de Física Extraterrestre en Alemania y la Universidad de California en Berkeley, Estados Unidos, y la profesora Andrea Ghez de la Universidad de California en Los Ángeles, Estados Unidos “por el descubrimiento de un objeto compacto supermasivo en el centro de nuestra galaxia”.

Los tres galardonados comparten el premio por sus descubrimientos sobre uno de los fenómenos más exóticos del universo: el agujero negro. Penrose demostró que la teoría general de la relatividad conduce a la formación de este tipo de objeto, y Genzel y Ghez encontraron que uno invisible y extremadamente pesado gobierna las órbitas de las estrellas en el centro de la Vía Láctea. Un agujero negro supermasivo es la única explicación conocida actualmente.

Roger Penrose (Colchester-Reino Unido, 1931) utilizó ingeniosos métodos matemáticos para confirmar que estos objetos son una consecuencia directa de la teoría general de la relatividad de Albert Einstein. El mismo Einstein no creía que los agujeros negros realmente existieran, esos monstruos superpesados ​​que capturan todo lo que entra en ellos. Nada puede escapar, ni siquiera la luz.

Corte transversal de un hoyo negro
Crédito: Johan Jarnestad/The Royal Swedish Academy of Sciences

En enero de 1965, diez años después de la muerte de Einstein, Penrose demostró que los agujeros negros realmente se pueden formar y los describió en detalle. En su interior, los agujeros negros esconden una singularidad en la que cesan todas las leyes conocidas de la naturaleza. Su artículo innovador todavía se considera la contribución más importante a la teoría general de la relatividad desde Einstein.

Por su parte, Reinhard Genzel (Bad Homburg-Alemania, 1952) y Andrea Ghez (Nueva York-EE UU, 1965) lideran cada uno un grupo de astrónomos que, desde principios de la década de 1990, se ha centrado en una región llamada Sagitario A * en el centro de nuestra galaxia. Las órbitas de las estrellas más brillantes y cercanas a ese núcleo de la Vía Láctea se han cartografiado con una precisión cada vez mayor.

Las mediciones de estos dos grupos concuerdan, y ambos encontraron un objeto invisible extremadamente pesado que tira del revoltijo de estrellas, haciéndolas correr a velocidades vertiginosas. Aunque ‘pesa’ alrededor de cuatro millones de masas solares, ocupa una región no mayor que nuestro sistema solar.

Usando los telescopios más grandes del mundo, Genzel y Ghez desarrollaron métodos para ver a través de las enormes nubes de gas y polvo interestelar hasta el centro de la Vía Láctea. Extendiendo los límites de la tecnología, perfeccionaron nuevas técnicas para compensar las distorsiones causadas por la atmósfera terrestre, construyeron instrumentos únicos y se comprometieron con una investigación a largo plazo.

En conjunto, su trabajo pionero ha proporcionado la evidencia más convincente hasta la fecha de que en el centro de nuestra galaxia hay un agujero negro supermasivo.

Esquema de la Vía Láctea
Crédito: Johan Jarnestad /The Royal Swedish Academy of Sciences

“Los descubrimientos de los galardonados de este año han abierto nuevos caminos en el estudio de objetos compactos y supermasivos”, ha destacado David Haviland, presidente del Comité Nobel de Física.

“Pero estos objetos exóticos todavía plantean muchas preguntas que requieren respuestas y una investigación futura. Y no solo preguntas sobre su estructura interna, sino también sobre cómo probar nuestra teoría de la gravedad en las condiciones extremas del entorno más próximo al agujero negro”, concluye.

Fuente: SINC